

MATHEMATICS I

Degree(s) : Economics; Management

Type : Compulsory course unit

Curricular year/semester : 1st year - 1st Semester / 2nd Semester

ECTS / hours per week : 6 ECTS / 5.0 Hours

Workload per week : 2Theoretical x 1.5 Hours + 1Practical x 2 Hours

Teacher responsible : Professor Fernando Gonçalves (1st Semester)

: Professor Filipa Duarte de Carvalho (2nd Semester)

OBJECTIVES

- To provide a grounding in mathematical tools that are needed for economics.
- To develop rigour and ability to manipulate mathematical methods.
- To increase capacity for solving quantitative problems having applications in economics in view.

PROGRAM

Introduction to linear algebra

- 1. Vectors: The linear space Rn; Dot product, norm, distance, and orthogonal vectors; Linear combination and independence.
- 2. Matrices: Matrix algebra; Invertible matrices; Rank.
- 3. Determinants: Definitions. Properties of the determinants; Laplace's expansion; Ad-jugate and inverse of a square matrix.
- 4. Systems of linear equations: Matrix form and solvability; Gaussian elimination; Application: invertibility of a matrix and determining the inverse; Cramer's rule.

Calculus

- 5. The real number system: Basic concepts of set theory; Axioms of the real number system, basic results; The metric space R.
- 6. Sequences; Definitions; Basic results; Extended real numbers.
- 7. Series: Definitions and basic results; Geometric series; Power series.

Mathematics I Page 1 of 2

- 8. One-variable functions: Generalities; Geometric representation of real functions; Operations on functions; Boundedness, monotonicity, parity, zeros; Main types of real functions.
- 9. Limits and continuity: The notion of limit; Algebra of limits; Infinite limits and limits at infinity; Continuous functions; Theorems about continuous functions.
- 10. Differentiation: The notion of derivative, geometric interpretation; The algebra of derivatives, derivatives of elementary functions; Theorems about differentiable functions; Polynomial approximations.
- 11. Optimisation: Extreme values of functions; Geometric properties of functions; Second derivative test for extrema; Sketching the graph of a function.
- 12. Antidifferentiation: De_nitions and basic results; Methods of antidifferentiation; Partial fractions.
- 13. Integration: Definite integral; The fundamental theorem of calculus; Methods of integration; Improper integrals; Application to the computation of areas.

BIBLIOGRAPHY

Recommended Bibliography:

- Apostol, T., 1967: Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra, 2nd ed., John Wiley, USA.
- Blyth, T. S., and E. F. Robertson, 1998: Basic Linear Algebra, Springer-Verlag, UK.
- Gonçalves, F. F., 2014: Mathematics I Lecture Notes, ISEG, Lisboa.
- Simmons, G. F., 1996: Calculus with Analytic Geometry, 2nd ed., McGraw-Hill, USA.

Mathematics I Page 2 of 2